Bayesian Reordering Model with Feature Selection
نویسندگان
چکیده
In phrase-based statistical machine translation systems, variation in grammatical structures between source and target languages can cause large movements of phrases. Modeling such movements is crucial in achieving translations of long sentences that appear natural in the target language. We explore generative learning approach to phrase reordering in Arabic to English. Formulating the reordering problem as a classification problem and using naive Bayes with feature selection, we achieve an improvement in the BLEU score over a lexicalized reordering model. The proposed model is compact, fast and scalable to a large corpus.
منابع مشابه
A New Hybrid Framework for Filter based Feature Selection using Information Gain and Symmetric Uncertainty (TECHNICAL NOTE)
Feature selection is a pre-processing technique used for eliminating the irrelevant and redundant features which results in enhancing the performance of the classifiers. When a dataset contains more irrelevant and redundant features, it fails to increase the accuracy and also reduces the performance of the classifiers. To avoid them, this paper presents a new hybrid feature selection method usi...
متن کاملExtracting Predictor Variables to Construct Breast Cancer Survivability Model with Class Imbalance Problem
Application of data mining methods as a decision support system has a great benefit to predict survival of new patients. It also has a great potential for health researchers to investigate the relationship between risk factors and cancer survival. But due to the imbalanced nature of datasets associated with breast cancer survival, the accuracy of survival prognosis models is a challenging issue...
متن کاملEnsemble Classification and Extended Feature Selection for Credit Card Fraud Detection
Due to the rise of technology, the possibility of fraud in different areas such as banking has been increased. Credit card fraud is a crucial problem in banking and its danger is over increasing. This paper proposes an advanced data mining method, considering both feature selection and decision cost for accuracy enhancement of credit card fraud detection. After selecting the best and most effec...
متن کاملSupervised Kernel Principal Component Analysis by Most Expressive Feature Reordering
The presented paper is concerned with feature space derivation through feature selection. The selection is performed on results of kernel Principal Component Analysis (kPCA) of input data samples. Several criteria that drive feature selection process are introduced and their performance is assessed and compared against the reference approach, which is a combination of kPCA and most expressive f...
متن کاملAn Improved Flower Pollination Algorithm with AdaBoost Algorithm for Feature Selection in Text Documents Classification
In recent years, production of text documents has seen an exponential growth, which is the reason why their proper classification seems necessary for better access. One of the main problems of classifying text documents is working in high-dimensional feature space. Feature Selection (FS) is one of the ways to reduce the number of text attributes. So, working with a great bulk of the feature spa...
متن کامل